Principles of Macroeconomics: Real GDP and CPI Class 2

Alex Houtz (Presented by Chris Monjaras)

August 14, 2025

University of Notre Dame

Overview

Announcements:

- You should be able to access your homework on Achieve (due September 12th at 11:59pm)
- Make sure you have read the syllabus if something is in the syllabus, don't email me about it

► Topics:

- National Accounts recap
- Nominal vs Real
- Real GDP
- Consumer Price Index

► Readings:

• Chapter 7.2 (Real GDP), chapter 7.3 (Price Indices), chapter 9.1 (Comparing Economies)

National Accounting Recap

- ► Production: GDP (*Y*)
- ▶ Spending: C + I + G + (x i)
- ► Income: Wages + Rent + Interest + Profits
- ► These all come from the circular flow diagrams
- ► Production = Spending = Income
- ► Y = C + I + G + (x i)
- ► We can measure production using Value Added, spending using the national accounts data, and income using the GNI accounts data

Nominal vs. Real

- ► Suppose we want to know the value of a good sold say Labubu toys (if you don't know what these are, neither do I).
- ▶ Then we can multiply the price times the quantity:

$$Value_{Labubu} = P_{Labubu} \times Q_{Labubu}$$

Extend this logic to the full economy:

$$V_{US} = P_{US} \times Q_{US}$$

- ▶ We call P_{US} the price level, and Q_{US} real GDP (RGDP).
- ▶ Nominal GDP (NGDP) is then the value of goods and services produced in the US.

Well, what is the Quantity of GDP?

- ► We can easily measure NGDP by just computing the value for each item (like Labubu toys) and adding them up.
- ▶ But what does it mean to add quantities?
 - Suppose the economy consists of Labubu toys and Squishmallows. Suppose 7 Labubu toys were sold and 10 Squishmallows were sold. Then:

? = 7 Labubu + 10 Squishmallows

Calculating RGDP

- ► In practice, we do the following:
 - 1. Pick a "base year."
 - 2. Collect prices from that base year.
 - 3. Collect quantities for all years you are interest in.
 - 4. Compute the value of GDP in each year using base year prices.
- ▶ This way, we have a value still, but we keep prices fixed over time.

An Example

	Year 1	Year 2
Quantities (billions)		
Labubu	2	2.2
Squishmallows	1	1.2
Prices (dollars)		
Labubu	45	54
Squishmallows	15	21
NGDP (billions of dollars) RGDP (billions of Year 1 dollars)		

- ► Compute nominal GDP in each year
- ► Compute real GDP using year 1 prices
- ► What is the rate of change in the GDP price index?

Answers

- Compute nominal GDP
 - Year 1: $2 \times \$45 + 1 \times \$15 = \$105$
 - Year 2: $2.2 \times \$54 + 1.2 \times \$21 = \$144$
 - NGDP growth rate: $100 \left(\frac{144-105}{105} \right) = 37.1\%$
- Compute real GDP
 - Year 1: $2 \times \$45 + 1 \times \$15 = \$105$
 - Year 2: $2.2 \times \$45 + 1.2 \times \$15 = \$117$
 - RGDP growth rate: $100 \left(\frac{117-105}{105} \right) = 11.4\%$
- ▶ What is the rate of change in the GDP price index?

 - $\frac{NGDP_2}{NGDP_1} = \frac{P_2}{P_1} \times \frac{RGDP_2}{RGDP_1}$ $\frac{P_2}{P_1} = \frac{NGDP_2}{NGDP_1} \times \frac{RGDP_1}{RGDP_2} = \frac{144}{105} \times \frac{105}{117} = 1.23$
 - So: $100 \left(\frac{P_2 P_1}{P_1} \right) = 23\%$

The GDP Deflator

► We can simplify the price index:

$$\begin{split} \frac{P_2}{P_1} &= \frac{NGDP_2}{NGDP_1} \times \frac{RGDP_1}{RGDP_2} \\ &= \frac{NGDP_2}{NGDP_1} \times \frac{NGDP_1}{RGDP_2} \\ &= \frac{NGDP_2}{RGDP_2} \end{split}$$

- ► We call this the "Paasche Price Index"
- ▶ It only uses period 2 quantities to add up prices in each year.

But...

- ► Which year do we choose as a base year?
- ► Let's choose period 2 as our base year now:
 - Year 1: $2 \times \$54 + 1 \times \$21 = \$129$
 - Year 2: $2.2 \times \$54 + 1.2 \times \$21 = \$144$
 - ullet Real GDP growth: $100\left(\frac{144-129}{129}\right)=11.6\%$
- ▶ But before we got real GDP growth of 11.4%
- ► So how do we solve this?

The BEA Solution

▶ The BEA uses what is called a "geometric mean" to calculate real GDP:

$$\frac{RGDP_2}{RGDP_1} = \left(\frac{GDP_2 \text{ at year 1 prices}}{GDP_1 \text{ at year 1 prices}}\right)^{\frac{1}{2}} \left(\frac{GDP_2 \text{ at year 2 prices}}{GDP_1 \text{ at year 2 prices}}\right)^{\frac{1}{2}}$$

- ► This is called the "Fisher Index"
- Going back to Labubu and Squishmallows:

$$\frac{RGDP_2}{RGDP_1} = \left(\frac{117}{105}\right)^{\frac{1}{2}} \left(\frac{144}{129}\right)^{\frac{1}{2}}$$
$$= 1.1152$$

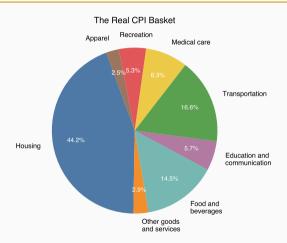
► So we get a growth rate of 11.52%

Consumer Prices

- ▶ Just like GDP, consumption can be real and nominal as well.
 - ullet Nominal consumption \equiv dollars spend on consumption
 - ullet Real consumption \equiv quantity of goods consumed
- ▶ We call the price index for consumption the "Consumer Price Index" (CPI).
- ► The idea: measure how the price a "typical" basket of consumer goods changes over time.

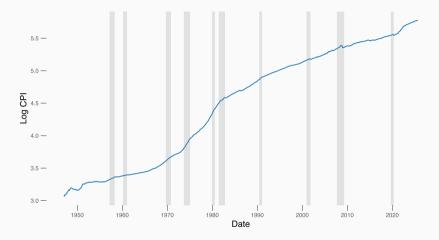
CPI Example

➤ Suppose we have a basket of goods: 10 Labubu, 12 Squishmallows, and 6 Tamagotchi, with prices given below:


	Year 1	Year 2
Prices (dollars)		
Labubu	45	54
Squishmallows	15	21
Tamagotchi	20	36
Cost of Basket		

- ► Calculate CPI using: $100 \times \frac{P_2^{basket}}{P_1^{basket}}$
- ► Calculate CPI inflation

Answers


- ► The Cost of Basket:
 - Year 1: $10 \times \$45 + 12 \times \$15 + 6 \times \$20 = \750
 - Year 2: $10 \times \$54 + 12 \times \$21 + 6 \times \$36 = \1008
- ► So CPI is: $100 \times \frac{1008}{750} = 134.4$
- ► Therefore CPI inflation is 34.4%

The Basket (2023)

► To calculate the CPI, the BLS needs to decide on a basket. Is this the price index ALL people face?

Log CPI Time Series - Slope is Inflation

 \blacktriangleright Average inflation rate: 3.4% year-over-year from 1947M1 to 2025M7

Summary

- ► Real GDP vs. Nominal GDP
- ► GDP Deflator
- ► CPI
- ► There are other price indices producer price index (PPI), personal consumption expenditure price index (PCEPI).
 - The Federal Reserve tends to look at PCEPI for their inflation gauge.
 - Go read about them.
- ► Next week: Long run growth
 - Read chapter 9.1